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Abstract

The proteins associated with gene regulation are often shared between multiple pathways 

simultaneously. By way of contrast, models in regulatory biology often assume these pathways act 

independently. We demonstrate a framework for calculating the change in gene expression for the 

interacting case by decoupling repressor occupancy across the cell from the gene of interest by 

way of a chemical potential. The details of the interacting regulatory architecture are encompassed 

in an effective concentration, and thus, a single scaling function describes a collection of gene 

expression data from diverse regulatory situations and collapses it onto a single master curve.

Cells undertake multiple signaling, regulatory, and biochemical tasks simultaneously, and 

typically the proteins engaged in these pathways are multipurposed [1]. In the gene 

regulatory setting, this leaves each gene to compete for regulatory proteins (transcription 

factors) with an array of binding sites across the genome. In addition, genes often exist in 

multiple, identical copies due to being carried on plasmid or viral vectors or simply from 
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chromosomal replication as a natural part of the cell cycle. As a result, it is of great interest 

to predict the quantitative effect of this competition on the regulation of gene expression as a 

function of parameters such as the transcription factor copy number, the arrangement of 

binding sites on the gene of interest, and the total number and binding strengths of the array 

of binding sites available to the transcription factor across the genome.

However, systematic studies of gene expression often measure expression from genes that 

are isolated from the remaining genes in the cell [2–8]. Recently, there has been great 

progress in understanding and predicting the consequences for gene expression of 

competition from other genes in the cell [9–12]. Furthermore, it has been shown that a 

simple extension of the thermodynamic models of gene expression [13–15] can predict gene 

expression in a wide array of situations where a transcription factor is shared between either 

multiple identical copies of a gene or a single copy of a gene competing with other unrelated 

binding sites [16,17].

The theory used to predict and interpret expression, derived in the canonical ensemble, is 

powerful in the sense that it can be used to make predictions for any competition scenario, 

assuming that the various states of the system can be enumerated, i.e., all the ways the R 

transcription factors can be distributed amongst N binding sites with binding energy ε. 

Figures 1(a)–1(c) show theoretical predictions for how changing key regulatory parameters 

results in unique gene expression profiles as a function of repressor copy number for the 

case of simple repression in which a gene is under negative control by the action of a 

repressor molecule. However, an unwieldy facet of the theory is that each curve, though 

derived from the same core principle, appears to imply a unique and unrelated response 

curve.

In this Letter, we show that when the target sites for repressor molecules are decoupled 

using the grand canonical ensemble, the predicted transcription of all competition scenarios 

collapses onto the same simple scaling function for a given promoter architecture. The 

parameter that fully determines the response is simply e−β(ε−μ), where μ is the chemical 

potential of the transcription factor, ε is the interaction strength between transcription factor 

and its binding site at the promoter and β = 1/kBT where kB is Boltzmann’s constant and T is 

the absolute temperature. This formulation has the added benefit that it can be solved 

analytically very simply for a number of competition scenarios, which alternatively, in the 

canonical ensemble lead to challenging calculations. In this work, we calculate the fold 

change in gene expression (FC), which is defined as the gene expression in the presence of a 

given number of transcription factors divided by the gene expression in the absence of those 

transcription factors, as a way to measure the level of regulation from systematically tuning 

the parameters of that regulation (number of transcription factors, binding strength, etc.) 

[6,8,18–21]. In the remainder of this Letter, we examine the general framework of the 

thermodynamic theory in the grand canonical ensemble and work through several examples 

of transcription factor competition. Most importantly, we show how this new approach to 

thermodynamic descriptions of gene expression suggests what one might call the “natural 

variable” for the scaling of fold change in expression. When plotted against this natural 

variable for the systemin question, a broad spectrum of regulatory data from diverse 

experimental situations is shown to collapse onto a single master curve, indicating that 
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although these different regulatory scenarios appear superficially different, the underlying 

structure of the regulatory response is the same.

For this work, we focus on the familiar promoter architecture of simple repression (see Fig. 

1) [8,15,22] consisting of a single repressor binding site capable of halting transcription by 

RNA polymerase (RNAP) when a repressor is bound. Note, however, that the framework 

developed here can be applied to any regulatory architecture (see table 1 in Ref. [15]). In 

order to derive an expression for FC in the limit where RNAP binding is weak (the promoter 

is typically not occupied by RNAP [8]), consider a cell with Ns promoter sites. The subscript 

“s” stands for “specific,” in contrast to the nonspecific sites with subscript “ ns” or 

competitor sites with subscript “c,” which are introduced later (shown schematically in Fig. 

2). Uncorrelated binding of repressors, with copy number R, and RNAP, with copy number 

P, may occur on the promoter sites. If a promoter site is occupied by repressor, the RNAP 

cannot bind and the gene is inactive. Let the repressor binding energy to its binding site at 

the promoter sites be εs, and the RNAP binding energy to the promoter sites be εp. The 

grand partition function of this binary lattice is given by

(1)

(2)

In this equation, p̃ is the number of adsorbed RNAP molecules onto the promoter sites, and r̃ 

is the number of repressors adsorbed onto their promoter binding sites. The multinomial 

coefficient is

The fugacities are λp = eβμp, where μp is the chemical potential of the RNAP, and λr = eβμr, 

where μr is the chemical potential of the repressor molecule. The average number of RNAP 

molecules adsorbed onto the Ns promoter sites is given by

(3)

The fold change, FC, is given by the average number of adsorbed RNAP molecules in the 

presence of the repressors divided by the average number of adsorbed RNAP molecules in 

the absence of the repressors yielding
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(4)

where 〈Ps(R = 0)〉 follows from Eq. (3) with λre−βεs = 0. In the weak promoter limit, which 

is defined by λpe−βεp ≪ 1 [8,15,22], we have

(5)

In other words, in the weak promoter limit only the repressor properties are relevant, and we 

may ignore all properties of the RNAP in the analyses. Another way of looking at Eq. (5) is 

that the fraction of promoter sites available for the RNAP is proportional to the fraction of 

promoter sites that are not covered by repressors: repressors are the “masters” and RNAPs 

are “followers”. We now have a general expression for the fold change in expression, FC, 

for the simple repressor promoter architecture with a parameter λr that contains information 

regarding the availability of the repressor in a specific competitive environment (the number 

of repressors and the strength and copy number of identical or competing binding sites). In 

the following section, we will derive λr for several important and common regulatory 

scenarios.

We now wish to derive an expression for the fugacity which tells us about the relative 

availability of repressors (given a total number of repressors R) to our binding sites of 

interest. In this way, λr contains information of alternative binding reservoirs for repressors 

such as number of binding sites and binding affinity. Figure 2 shows a schematic of a cell 

that contains three options for repressor binding: (1) Ns specific binding sites representing 

repressor binding with energy εs and regulating a gene copy, (2) Nc competitor binding sites 

representing specific binding with energy εc to a binding site whose occupancy does not 

regulate expression, and (3) Nns nonspecific binding sites representing repressor binding to 

the nonspecific genomic background (taken to be 5 × 106, the size of the E. coli genome). 

We make the approximation that the binding energies of all the nonspecific sites have the 

same value and set this value as zero (such that all energies are measured with respect to this 

nonspecific binding). Each reservoir is characterized by the number of available sites and 

the energy with which a repressor binds one of these sites. The average number of repressors 

bound to the specific lattices is

(6)

Analogous to Eq. (2) the grand partition energy of either of the two additional, single species 

binding lattices (nonspecific or competitor) is generically 

, which leads to the average number of adsorbed 

repressors on nonspecific DNA sites,
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(7)

and similarly for the competitor sites,

(8)

These reservoirs are connected by the constraint that the total number of repressors bound 

between them is equal (on average) to the total number of repressors in the cell,

(9)

In principle, more unique reservoirs can be added to the conservation equation to account for 

each specific binding energy available to the molecule of interest; each unique binding 

energy adds one more reservoir to the problem whose chemical potential must be 

considered. The substitution of Eqs. (6)–(8) into Eq. (9) leads to a cubic equation for λr of 

the form , which yields the positive real root

(10)

with  C1 = (c/3a) − (b/3a)2, and C2 = (bc/6a2) + (R/2a) − (b/3a)3. 

The coefficients a, b, and c are derived under the conditions that Nns ≫ (R,Ns, Nc), given by 

a = eβεceβεsNns, b = (eβεc + eβεs)Nns + eβεceβεs (Ns + Nc − R), and c = Nns+ eβεc (Nc − R) + 

eβεs (Ns − R). When taken with Eq. (5), we now have a closed equation for FC as a function 

of total repressor copy number R, number of specific (Ns), competitor (Nc), nonspecific 

(Nns), and binding energies to each of these types of sites. In the limit of no competing sites, 

i.e., Nc = 0 and e−βεc = 0, Eq. (10) simplifies to the root of a quadratic equation. In the limit 

of an isolated promoter, where Ns = 1, we recover the canonical expression for FC derived 

previously, that is, Eq. (5) with λr = R/N ns when R ≫ 1 such that R ≈ 〈Rns〉 [8,15]; 

however, in the limit of small R the predictions differ slightly because of the different 

constraints imposed by the models. Figures 3(a)–3(c) shows the fugacity and average 

occupancy of each lattice vs the number of repressors for each of these cases: isolated 

promoter, identical promoters, and identical promoters with competitors. The primary 

features in the occupancy and λr curves occur whenever R becomes large enough to saturate 

one of the binding lattices; for instance, in Fig. 3(c), first the competitor and then the 

specific lattice saturate as R becomes larger than Nc and then larger than Nc + Ns.

The theoretical ideas developed above really demonstrate their power when used as a prism 

through which to view a broad spectrum of gene regulation data. Much recent effort has 

gone into careful measurement of gene expression as a function of key tunable parameters 

such as the number of transcription factors, the transcription factor binding site strength, the 
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number of gene copies, and the number and strength of competing binding sites. These 

various scenarios, however, give the superficial appearance of each being a separate and 

unique quantitative story. To that end, Fig. 4(a) shows the data by Garcia and Phillips [8] 

and Brewster et al. [17] plotted as the fold change in gene expression FC versus the 

repressor number R. The common feature between each of these data sets is that the 

expressed gene is regulated by simple repression; however, each distinct symbol represents a 

unique repressor binding energy, different number of promoters or competitor sites all with 

a unique functional form, which are quantitatively described by the theory curves derived in 

the canonical ensemble and reported in Ref. [17]. Here, we demonstrate that, in fact, within 

the grand canonical approach Eq. (5) directly reveals the relevant parameter for data 

collapse, with the same functional form for FC. That is, for any scenario, be it single or 

several promoters, presence or absence of competitor sites, etc., a data point is uniquely 

determined by λr and εs. If plotted as FC versus λre−βεs, data collapse should occur and obey 

Eq. (5). As can be seen in Fig. 4(b) this is indeed the case; over several decades and without 

adjustable parameters, the data for all of these seemingly distinct regulatory scenarios falls 

on a single universal curve.

In conclusion, through the grand canonical formalism described here, we are able to predict 

the fold change in gene expression for a gene regulated by a transcription factor protein that 

also binds at other unrelated sites within the cell. Conveniently, the effect of this sharing is 

totally encapsulated in the fugacity parameter λ, which acts as an effective concentration of 

the transcription factor for a given regulatory scenario, i.e., the spectrum of competing 

binding sites for the transcription factor present in the cell. As a result, a single scaling 

function describes the gene regulation for quite distinct competition scenarios, which 

highlights the fact that in some complex biological settings, distinct phenomena can be seen 

as reflecting similar underlying mechanisms when using the natural variables of the 

problem. Specifically, the data collapse in Fig. 4(b) tells us that the same statistical 

mechanical phenomena are at work in all cases; namely, binding and unbinding of proteins 

at their target sites. The occupancy of the specific binding sites, which is the relevant 

quantity that dictates the fold change in gene expression, is determined solely by the 

fugacity of the repressor and the binding energy of the repressor to the specific sites. It will 

be of great interest to apply these ideas to other regulatory architectures to see if this same 

kind of data collapse is able to link seemingly disparate regulatory phenomena.
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Fig. 1. 
Predicted regulatory response. Examples of parameters to tune the competition for 

transcription factors for the case of a simple repression regulatory architecture and the 

predicted fold change in gene expression (FC) as a function of the repressor copy number. 

(a) The gene copy number determines at what value of the repressor copy number the gene 

shifts from being unrepressed to being repressed. (b) The operator site strength effects the 

fold change in expression at high repressor copy numbers in the presence of a fixed number 

(50) of identical genes. (c) The binding strength of competing binding sites effects the 

sharpness of the transition between unrepressed and repressed state for a fixed operator site 

binding strength of −15kBT.
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Fig. 2. 
(a) Schematic of chromosome when viewed as a lattice of possible binding sites that can be 

occupied (or not) by a repressor. Within the cell are multiple identical, regulated promoters 

(that produce a measurable gene product), “competitor sites” that bind the repressor stronger 

than a nonspecific interaction but do not regulate a gene, and nonspecific sites that each bind 

the repressor weakly. (b) In the grand canonical framework, each of these types of binding 

site is treated as a lattice of possible binding sites, characterized by the number of sites in the 

lattice N and the energy with which each site binds the transcription factor ε, with a 

chemical potential responsible for maintaining balance between the number of molecules 

bound on each lattice.
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Fig. 3. 
Functional form of the fugacity λr and occupancies of repressor binding sites for different 

situations. (a) A single isolated promoter. The single specific repressor binding site in the 

promoter region is filled up immediately, and almost all repressors are bound to the 

nonspecific sites. (b) Multiple identical copies of the promoter. The specific repressor 

binding sites are filled up first, before the repressors bind to the nonspecific sites with a 

15kBT higher binding energy. The fugacity of the repressors increases abruptly at R = Ns, 

marked by dashed vertical lines. (c) Multiple identical copies of the promoter and multiple 

competitor sites. The repressors fill up the competitor binding sites with the lowest repressor 

binding energy of εc = −20kBT, before binding to the specific binding sites and finally to the 

nonspecific sites. The fugacity increases abruptly at R = Ns and R = Ns + Nc, marked by the 

dashed vertical lines.
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Fig. 4. 
Gene expression data by Garcia and Phillips [8] and Brewster et al. [17] for various 

regulatory scenarios. (a) The data and theory plotted versus the repressor copy number R 

shows a variety of functional forms. (b) The data rescaled to collapse to the same functional 

form. The blue solid line is the prediction from Eq. (5) without fitting parameter. The 

repressor binding energies are taken from Ref. [8] as ε = −9.7kBT for O3, ε = −13.9kBT for 

O2, ε = −15.3kBT for O1, ε = −17.0kBT for Oid. Values for copy numbers of promoters Ns or 
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competitor binding sites Nc are measured in Ref. [17] by qPCR. For each data set, λr is 

calculated using these parameters and Eq. (10).
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